Effect of Vitamin D in HN9.10e Embryonic Hippocampal Cells and in Hippocampus from MPTP-Induced Parkinson’s Disease Mouse Model

نویسندگان

  • Samuela Cataldi
  • Cataldo Arcuri
  • Stéphane Hunot
  • Carmen Mecca
  • Michela Codini
  • Maria E. Laurenti
  • Ivana Ferri
  • Elisabetta Loreti
  • Mercedes Garcia-Gil
  • Giovanna Traina
  • Carmela Conte
  • Francesco S. Ambesi-Impiombato
  • Tommaso Beccari
  • Francesco Curcio
  • Elisabetta Albi
چکیده

It has long been proven that neurogenesis continues in the adult brains of mammals in the dentatus gyrus of the hippocampus due to the presence of neural stem cells. Although a large number of studies have been carried out to highlight the localization of vitamin D receptor in hippocampus, the expression of vitamin D receptor in neurogenic dentatus gyrus of hippocampus in Parkinson's disease (PD) and the molecular mechanisms triggered by vitamin D underlying the production of differentiated neurons from embryonic cells remain unknown. Thus, we performed a preclinical in vivo study by inducing PD in mice with MPTP and showed a reduction of glial fibrillary acidic protein (GFAP) and vitamin D receptor in the dentatus gyrus of hippocampus. Then, we performed an in vitro study by inducing embryonic hippocampal cell differentiation with vitamin D. Interestingly, vitamin D stimulates the expression of its receptor. Vitamin D receptor is a transcription factor that probably is responsible for the upregulation of microtubule associated protein 2 and neurofilament heavy polypeptide genes. The latter increases heavy neurofilament protein expression, essential for neurofilament growth. Notably N-cadherin, implicated in activity for dendritic outgrowth, is upregulated by vitamin D.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Olive Leaf Methanolic Extract on Hippocampal Antioxidant Biomarkers in an Animal Model of Parkinson’s Disease

Background and Objective: Parkinson’s disease (PD) is a chronic neurodegenerative disease characterized by damages to striatal dopaminergic neurons that affects 1 to 2% of the population above 65 years of age. Olive leaf extract (OLE) is a powerful antioxidant that is considered as a source of various phenolic compounds. This study was conducted to evaluate the effects of methanolic OLE on hipp...

متن کامل

The effects of aqueous cinnamon bark extract and cinnamaldehyde on neurons of substantia nigra and behavioral impairment in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in substantia nigra. In recent years, there have been interests in the role of the free radical damage in PD. Cinnamon and its derivative, cinnamaldehyde acts as powerful antioxidant and anti-inflammatory agents. This research focused on the effects of cinnamon extract and cinnamald...

متن کامل

Cinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease

Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...

متن کامل

Effect of vitamin D supplementation on CREB-TrkB-BDNF pathway in the hippocampus of diabetic rats

Objective(s): Cyclic AMP (adenosine monophosphate) response element-binding protein (CREB) and Brain-derived neurotrophic factor (BDNF) are reported to broadly involve in learning capacity and memory. BDNF exerts its functions via tropomyosin receptor kinase B (TrkB). BDNF transcription is regulated by stimulating CREB phosphorylation. The CREB-TrkB-BDNF pathway is rep...

متن کامل

Investigation of the Effect of Cycloserine on Motor Function in a Rat Model of Parkinson’s disease

Background: Previous studies have shown cycloserine to be neuroprotective in some neurodegenerative disorders. Objectives: To investigate the effect of cycloserine on motor function in Parkinson’s disease in a rat model. Materials and Methods: Fifty-six healthy male wistar rats were used in this study and were divided into seven groups according to receiving saline, low dose (i.e. 100 m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2018